1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
{-# LANGUAGE FlexibleInstances #-}
data FieldElement a = FieldElement
{ number :: a
, prime :: a
}
deriving Eq
instance (Num a, Show a) => Show (FieldElement a) where
show a = "FieldElement_" ++ show (prime a) ++ " " ++ show (number a)
instance Integral a => Num (FieldElement a) where
(FieldElement a b) + (FieldElement c d)
| b /= d = error "Distinct Fields"
| otherwise = FieldElement (mod (a + c) b) b
(FieldElement a b) * (FieldElement c d)
| b /= d = error "Distinct Fields"
| otherwise = FieldElement (mod (a * c) b) b
abs a = a
signum _ = 1
negate (FieldElement a b) = FieldElement (mod (b - a) b) b
fromInteger _ = error "can't transform"
instance (Integral a) => Fractional (FieldElement a) where
recip a = a ^ (prime a - 2)
fromRational _ = error "can't transform"
assert :: Bool -> Bool
assert False = error "WRONG"
assert x = x
aa =
let a = FieldElement 2 31
b = FieldElement 15 31
in assert
( (a + b == FieldElement 17 31)
&& (a /= b)
&& (a - b == FieldElement 18 31)
)
bb =
let a = FieldElement 19 31
b = FieldElement 24 31
in a * b
data ECPoint a
= Infinity
| ECPoint
{ x :: a
, y :: a
, a :: a
, b :: a
}
deriving (Eq )
rmul :: Integral a => a -> FieldElement a -> FieldElement a
a `rmul` (FieldElement v p) = FieldElement (mod (a * v) p) p
instance Show a => Show (ECPoint (FieldElement a)) where
show Infinity = "ECPoint(Infinity)"
show p = "ECPoint_" ++ show (prime (x p)) ++ points ++ params
where
points = "(" ++ show (number (x p)) ++ ", " ++ show (number (y p)) ++ ")"
params = "a_" ++ show (number (a p)) ++ "|b_" ++ show (number (b p))
validECPoint :: (Eq a, Num a) => ECPoint a -> Bool
validECPoint Infinity = True
validECPoint p = y p ^ 2 == x p ^ 3 + a p * x p + b p
add :: (Eq a, Fractional a) => ECPoint a -> ECPoint a -> ECPoint a
add Infinity p = p
add p Infinity = p
add p q | a p /= a q || b p /= b q = error "point not on same curve"
| x p == x q && y p /= y q = Infinity
| x p /= x q = new_point $ (y q - y p) / (x q - x p)
| x p == x q && y p == 0 = Infinity
| p == q = new_point $ (3 * x p ^ 2 + a p) / (2 * y p)
| otherwise = error "Unexpected case of points"
where
new_point slope =
let new_x = slope ^ 2 - x p - x q
new_y = slope * (x p - new_x) - y p
in ECPoint new_x new_y (a p) (b p)
cc =
let a = ECPoint 3 (-7) 5 7
b = ECPoint 18 77 5 7
c = ECPoint (-1) (-1) 5 7
in ( validECPoint a
, validECPoint b
, validECPoint c
, a /= b
, a == a
, add Infinity a
, add a (ECPoint 3 7 5 7)
, add (ECPoint 3 7 5 7) c
, add c c
)
dd =
let prime = 223
a = FieldElement 0 prime
b = FieldElement 7 prime
x = FieldElement 192 prime
y = FieldElement 105 prime
point = ECPoint x y a b
in validECPoint point
|